首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1938篇
  免费   319篇
  国内免费   290篇
测绘学   8篇
大气科学   1篇
地球物理   633篇
地质学   1448篇
海洋学   81篇
天文学   14篇
综合类   47篇
自然地理   315篇
  2024年   2篇
  2023年   22篇
  2022年   29篇
  2021年   46篇
  2020年   41篇
  2019年   80篇
  2018年   53篇
  2017年   49篇
  2016年   46篇
  2015年   67篇
  2014年   67篇
  2013年   162篇
  2012年   92篇
  2011年   59篇
  2010年   44篇
  2009年   103篇
  2008年   127篇
  2007年   108篇
  2006年   127篇
  2005年   102篇
  2004年   134篇
  2003年   93篇
  2002年   98篇
  2001年   83篇
  2000年   74篇
  1999年   74篇
  1998年   86篇
  1997年   83篇
  1996年   74篇
  1995年   68篇
  1994年   57篇
  1993年   39篇
  1992年   32篇
  1991年   19篇
  1990年   29篇
  1989年   17篇
  1988年   14篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1973年   1篇
  1954年   2篇
排序方式: 共有2547条查询结果,搜索用时 15 毫秒
51.
A deep seismic‐reflection transect in western Victoria was designed to provide insights into the structural relationship between the Lachlan and the Delamerian Orogens. Three seismic lines were acquired to provide images of the subsurface from west of the Grampians Range to east of the Stawell‐Ararat Fault Zone. The boundary between the Delamerian and Lachlan Orogens is now generally considered to be the Moyston Fault. In the vicinity of the seismic survey, this fault is intruded by a near‐surface granite, but at depth the fault dips to the east, confirming recent field mapping. East of the Moyston Fault, the uppermost crust is very weakly reflective, consisting of short, non‐continuous, west‐dipping reflections. These weak reflections represent rocks of the Lachlan Orogen and are typical of the reflective character seen on other seismic images from elsewhere in the Lachlan Orogen. Within the Lachlan Orogen, the Pleasant Creek Fault is also east dipping and approximately parallel to the Moyston Fault in the plane of the seismic section. Rocks of the Delamerian Orogen in the vicinity of the seismic line occur below surficial cover to the west of the Moyston Fault. Generally, the upper crust is only weakly reflective, but subhorizontal reflections at shallow depths (up to 3 km) represent the Grampians Group. The Escondida Fault appears to stop below the Grampians Group, and has an apparent gentle dip to the east. Farther east, the Golton and Mehuse Faults are also east dipping. The middle to lower crust below the Delamerian Orogen is strongly reflective, with several major antiformal structures in the middle crust. The Moho is a slightly undulating horizon at the base of the highly reflective middle to lower crust at 11–12 s TWT (approximately 35 km depth). Tectonically, the western margin of the Lachlan Orogen has been thrust over the Delamerian Orogen for a distance of at least 25 km, and possibly over 40 km.  相似文献   
52.
墨西哥湾南部晚侏罗纪主力烃源岩的形成条件   总被引:3,自引:0,他引:3  
通过对墨西哥湾不同时代可采储量的分布特征和油源对比资料的分析认为,晚侏罗纪烃源岩是墨西哥湾南部最主要的烃源岩。资料显示,晚侏罗纪优质烃源岩形成的主控因素是稳定的构造和沉积条件以及超咸的还原环境,其中,"世界顶级"的晚侏罗纪提塘阶烃源岩主要形成于超咸的碳酸盐岩和/或蒸发岩沉积环境,属半深海还原环境,有机质以藻类为主,推测烃源岩中的有机质可能与极端干旱气候条件下的藻类勃发有关。  相似文献   
53.
Increased oil and gas exploration activity has led to a detailed investigation of the continental shelf and adjacent slope regions of Mahanadi, Krishna–Godavari (KG) and Cauvery basins, which are promising petroliferous basins along the eastern continental margin of India. In this paper, we analyze the high resolution sparker, subbottom profiler and multibeam data in KG offshore basin to understand the shallow structures and shallow deposits for gas hydrate exploration. We identified and mapped prominent positive topographic features in the bathymetry data. These mounds show fluid/gas migration features such as acoustic voids, acoustic chimneys, and acoustic turbid layers. It is interesting to note that drilling/coring onboard JOIDES in the vicinity of the mounds show the presence of thick accumulation of subsurface gas hydrate. Further, geological and geochemical study of long sediment cores collected onboard Marion Dufresne in the vicinity of the mounds and sedimentary ridges shows the imprints of paleo-expulsion of methane and sulfidic fluid from the seafloor.  相似文献   
54.
Seismic reflection data indicate the Moroccan salt basin extends to the Cap Boujdour area in the Aaiun Basin. Two salt diapir structures have been identified and several areas of collapsed strata indicate probable salt removal at the shelf edge. The presence of salt in this area correlates to the conjugate southern George's Bank Basin and the Baltimore Canyon area, and it is suggested that the salt extends southward from the known salt diapir province in the George's Bank Basin southward to the Great Stone Dome. The paucity of salt diapirs is attributed to the thick carbonate and anhydrite sequence, which was deposited soon after salt deposition that inhibited halokinesis. The presence of salt along this large segment of the Atlantic margin should increase its hydrocarbon potential with traps created around salt diapirs and provision of migration pathways from deep potential source rocks in the early Cretaceous and Jurassic strata to shallower levels.  相似文献   
55.
The Willyama Supergroup of the Broken Hill region in southern Australia consists of supracrustal sedimentary and magmatic rocks, formed between 1810 and 1600 Ma. A statistical analysis of nearly 2000 SHRIMP U–Pb zircon spot ages, compiled from published and unpublished sources, provides evidence for three distinct tectonostratigraphic successions and four magmatic events during this interval. Succession 1 includes Redan Geophysical Zone gneisses and the lower part of the Thackaringa Group (Cues Formation). These rocks were deposited after 1810 Ma and host granite sills of the first magmatic event (1710–1700 Ma). Succession 2 includes the upper Thackaringa Group (Himalaya Formation), the Broken Hill Group and the Sundown Group and was deposited between 1710 and 1660 Ma. These rocks all contain detrital zircons from the first magmatic event (1710–1700 Ma) and in some cases from the second magmatic event (1690–1680 Ma). The second magmatic event (1690–1680 Ma) was bimodal, resulted from crustal extension, and was coeval with deposition of the Broken Hill Group and deepening of the basin. With this event a mafic sill swarm focused in the Broken Hill Domain. Mafic sills lack any trace of inheritance, unlike the granitoids that commonly contain inherited zircons typical of the supracrustal sediments. Succession 3, the Paragon Group and equivalents were deposited after 1660 Ma, but before a regional metamorphic event at 1600 Ma. Metamorphism was closely followed by inversion of the succession into a fold‐and‐thrust belt, accompanied by a fourth late to post‐orogenic magmatic event (ca 1580 Ma) characterised by granite intrusion and regional acid volcanism (the local equivalents of the Gawler Range Volcanics in South Australia).  相似文献   
56.
Bathymetric mapping and observations of the seafloor using a remotely operated vehicle (ROV, Hyper‐Dolphin 3K) were carried out on the slopes of the Miyako‐Sone submarine platform, east of Miyako‐jima in the Ryukyu Islands, northwestern Pacific Ocean. The bathymetric map indicates that terraces are present at water depths of approximately 140 m, 330 m, 400 m, and 680 m on the northwestern slope of the platform. A number of NW–SE trending lineaments, probably faults, extend perpendicular to the axis of the Ryukyu Island Arc. Two ROV surveys were conducted at water depths ranging from 519 m (on the slope) to 121 m (shallowest part of the platform). The surveys revealed that well‐indurated carbonate rocks are exposed at terrace margins and on upper slopes, and that the lower slopes are covered with modern sediments consisting of unconsolidated, coarse‐sand‐sized bioclastic carbonates. Calcareous nannofossils from the well‐indurated carbonate rocks indicate a Middle–Late Pleistocene age, which suggests that the rocks correlate with the Quaternary reef and fore‐reef deposits of the Ryukyu Group (Ryukyu Limestone) on the Ryukyu Islands. No siliciclastic deposits corresponding to the upper Miocene–lower Pleistocene Shimajiri Group (as exposed on Okinawa‐jima and Miyako‐jima islands) were recovered during the surveys. Coeval well‐indurated carbonate rocks, all of which formed in a similar sedimentary environment, have been downthrown towards the west due to displacements on the western sides of normal faults. Subsidence of the Miyako‐Sone submarine platform was the result of large vertical displacements on such normal faults. The timing of initial subsidence cannot be tightly constrained, but the presence of the youngest limestone at progressively lower levels towards the west suggests the subsidence continued until after 0.265 Ma.  相似文献   
57.
Mesozoic tectono-magmatic activities in South China:Retrospect and prospect   总被引:9,自引:0,他引:9  
The South China Block was formed through the collisional orogeny between the Cathaysia Block and the Yangtze Block in the Early Neoproterozoic.The northern,western and southern sides of the South China Block were affected by disappearance of the Paleo-Tethyan Ocean during the Paleozoic.The southern and northern sides of the South China Block were respectively collided with the Indo-China Block and North China Block in the latest Paleozoic to form the basic framework of the Eastern China.The Eastern China has been affected by the westward subduction of the Pacific Plate since the Mesozoic.Therefore,the South China Block was influenced by the three major tectonic systems,leading to a superposed compound tectonics.The comparative study of the Mesozoic geology between the South China Block and its surrounding areas suggests that although the Mesozoic South China Block was adjacent to the subduction zone of the western Pacific,no juvenile arc-type crust has been found in the eastern margin.The main Mesozoic geology in South China is characterized by reworking of ancient continental margins to intracontinental tectonics,lacking oceanic arc basalts and continental arc andesites.Therefore,a key to understanding of the Mesozoic geology in South China is to determine the temporal-spatial distribution and tectonic evolution of Mesozoic magmatic rocks in this region.This paper presents a review on the tectonic evolution of the South China Block through summarizing the magmatic rock records from the compressional to extensional tectonic process with the transition at the three juncture zones and using the deformation and geophysic data from the deep part of the South China continental lithosphere.Our attempt is to promote the study of South China’s geology and to make it as a typical target for development of plate tectonic theory.  相似文献   
58.
基于"构造体系控油作用研究"项目, 总结中国东部中新生代大地构造的基本特征及其演变的内在规律。研究表明, 中国东部中新生代构造形变史, 以侏罗纪末幕运动为标志划分为前后2个大阶段, 发育2种巨型扭动构造型式, 即华夏系和新华夏系, 其间存在广泛的构造不整合; 显示二元结构, 即新华夏系形变构造层与华夏系形变构造层的叠置, 是本区大地构造的基本特征。   相似文献   
59.
60.
?????????????????????????????????????????????????????鹹?????????????????????????????????????????????????????????????μ??W??????????強??????????????????????????????????????????????  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号